We report here on the application of digital holographic microscopy as a metrological tool for the inspection and the micro-topography reconstruction of different microstructures fabricated in bulk lithium niobate by differential etching of reversed ferroelectric domain patterned crystals. These structures have a range of applications in optical ridge waveguides, alignment structures, V-grooves, micro-tips and micro-cantilever beams and precise control of the surface quality and topography is required. The technique allows us to obtain digitally a high-fidelity surface topography description of the specimen with only one image acquisition allowing us to have relatively simple and compact set-ups able to give quantitative information on object morphology. The advantages of this technique compared to traditional microscopy are discussed.
Surface topography of microstructures in lithium niobate by digital holographic microscopy
De Nicola S;Ferraro P;Finizio A;Grilli S;Coppola G;Iodice M;De Natale P;
2004
Abstract
We report here on the application of digital holographic microscopy as a metrological tool for the inspection and the micro-topography reconstruction of different microstructures fabricated in bulk lithium niobate by differential etching of reversed ferroelectric domain patterned crystals. These structures have a range of applications in optical ridge waveguides, alignment structures, V-grooves, micro-tips and micro-cantilever beams and precise control of the surface quality and topography is required. The technique allows us to obtain digitally a high-fidelity surface topography description of the specimen with only one image acquisition allowing us to have relatively simple and compact set-ups able to give quantitative information on object morphology. The advantages of this technique compared to traditional microscopy are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.