We report a GaAs-based high-speed, resonant-cavity-enhanced, heterostructure metal-semiconductor-metal photodetector with Al0.24Ga0.76As/Al0.9Ga0.1As distributed Bragg reflector operating around 850 nm. The photocurrent spectrum shows a clear peak at this wavelength with full width at half maximum (FWHM) of around 30 nm. At resonance wavelength, a seven-fold increase can be achieved in quantum efficiency compared to a detector of the same absorption depth. The top reflector is a delta modulation doped Al0.24Ga0.76As that also acts as the barrier enhancement layer thus providing very low dark current values. The breakdown voltage is above 20 V. Time response measurements show rise time, fall time, and FWHM of 8.8 ps, 9 ps, and 8.1 ps, respectively, giving a 3-dB bandwidth of about 33 GHz. Combination of low dark current, fast response, wavelength selectivity, and compatibility with high electron mobility transistors makes this device especially suitable for short haul communications purposes.

Resonant-cavity-enhanced heterostructure metal-semiconductor-metal photodetector

Quaranta F;Cola A;
2002

Abstract

We report a GaAs-based high-speed, resonant-cavity-enhanced, heterostructure metal-semiconductor-metal photodetector with Al0.24Ga0.76As/Al0.9Ga0.1As distributed Bragg reflector operating around 850 nm. The photocurrent spectrum shows a clear peak at this wavelength with full width at half maximum (FWHM) of around 30 nm. At resonance wavelength, a seven-fold increase can be achieved in quantum efficiency compared to a detector of the same absorption depth. The top reflector is a delta modulation doped Al0.24Ga0.76As that also acts as the barrier enhancement layer thus providing very low dark current values. The breakdown voltage is above 20 V. Time response measurements show rise time, fall time, and FWHM of 8.8 ps, 9 ps, and 8.1 ps, respectively, giving a 3-dB bandwidth of about 33 GHz. Combination of low dark current, fast response, wavelength selectivity, and compatibility with high electron mobility transistors makes this device especially suitable for short haul communications purposes.
2002
Istituto per la Microelettronica e Microsistemi - IMM
Bragg Reflector
photodetectors
2DEG
heterostructure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/151012
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact