The standardization and quality control of plant extracts is an important topic, in particular, when such extracts are used for medicinal purposes. Consequently, the development of fast and effective analytical methods for metabolomic fingerprinting of plant extracts is of high interest. In this investigation, electrospray mass spectrometry (ESI-MS) and 1H NMR techniques were employed with further statistical analyses of the acquired data. The results showed that negative ion mode ESI-MS is particularly effective for characterization of plant extracts. Different samples of the same species appear well-clustered and separated from the other species. To verify the effectiveness of the method, two other batches of extracts from a species, in which the principal components were already identified (Cynara scolymus), were analyzed, and the components that were verified by the principal component analysis (PCA) were found to be within the region identified as characteristic of Cynara Scolymus extracts. The data from extracts of the other species were well separated from those pertaining to the species previously characterized. Only the case of a species that was strictly correlated from a botanical point of view, with extracts that were previously analyzed, showed overlapping.

Metabolomic fingerprinting of plant extracts

Tisato F;Traldi P
2006

Abstract

The standardization and quality control of plant extracts is an important topic, in particular, when such extracts are used for medicinal purposes. Consequently, the development of fast and effective analytical methods for metabolomic fingerprinting of plant extracts is of high interest. In this investigation, electrospray mass spectrometry (ESI-MS) and 1H NMR techniques were employed with further statistical analyses of the acquired data. The results showed that negative ion mode ESI-MS is particularly effective for characterization of plant extracts. Different samples of the same species appear well-clustered and separated from the other species. To verify the effectiveness of the method, two other batches of extracts from a species, in which the principal components were already identified (Cynara scolymus), were analyzed, and the components that were verified by the principal component analysis (PCA) were found to be within the region identified as characteristic of Cynara Scolymus extracts. The data from extracts of the other species were well separated from those pertaining to the species previously characterized. Only the case of a species that was strictly correlated from a botanical point of view, with extracts that were previously analyzed, showed overlapping.
2006
CHIMICA INORGANICA E DELLE SUPERFICI
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
metabolomics
plant extracts
multivariate analysis
ESI/MS
NMR
File in questo prodotto:
File Dimensione Formato  
prod_169069-doc_15359.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/151067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 54
social impact