We present the results of direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, up to resolution 512(3) (R-lambda approximate to 185). Following the trajectories of up to 120 million particles with Stokes numbers, St, in the range from 0.16 to 3.5 we are able to characterize in full detail the statistics of particle acceleration. We show that: (i) the root-mean-squared acceleration arms sharply falls off from the fluid tracer value at quite small Stokes numbers; (ii) at a given St the normalized acceleration a(rms)/(is an element of(3)/nu)(1/4) increases with R-lambda consistently with the trend observed for fluid tracers; (iii) the tails of the probability density function of the normalized acceleration a/a(rms) decrease with St. Two concurrent mechanisms lead to the above results: preferential concentration of particles, very effective at small St. and filtering induced by the particle response time, that takes over at larger St.

Acceleration statistics of heavy particles in turbulence

Cencini M;Lanotte A;Toschi F
2006

Abstract

We present the results of direct numerical simulations of heavy particle transport in homogeneous, isotropic, fully developed turbulence, up to resolution 512(3) (R-lambda approximate to 185). Following the trajectories of up to 120 million particles with Stokes numbers, St, in the range from 0.16 to 3.5 we are able to characterize in full detail the statistics of particle acceleration. We show that: (i) the root-mean-squared acceleration arms sharply falls off from the fluid tracer value at quite small Stokes numbers; (ii) at a given St the normalized acceleration a(rms)/(is an element of(3)/nu)(1/4) increases with R-lambda consistently with the trend observed for fluid tracers; (iii) the tails of the probability density function of the normalized acceleration a/a(rms) decrease with St. Two concurrent mechanisms lead to the above results: preferential concentration of particles, very effective at small St. and filtering induced by the particle response time, that takes over at larger St.
2006
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
INFM
turbulence
HOMOGENEOUS ISOTROPIC TURBULENCE
INERTIAL PARTICLES
PREFERENTIAL CONCENTRATION
INTERMITTENT DISTRIBUTION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/151327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 227
  • ???jsp.display-item.citation.isi??? ND
social impact