We study the dynamics of long-wavelength fluctuations in one-dimensional (1D) many-particle systems as described by self-consistent mode-coupling theory. The corresponding non-linear integro-differential equations for the relevant correlators are solved analytically and checked numerically. In particular, we find that the memory functions exhibit a power-law decay accompanied by relatively fast oscillations. Furthermore, the scaling behaviour and, correspondingly, the universality class depend on the order of the leading non-linear term. In the cubic case, both viscosity and thermal conductivity diverge in the thermodynamic limit. In the quartic case, a faster decay of the memory functions leads to a finite viscosity, while the thermal conductivity exhibits an even faster divergence. Finally, our analysis puts on a firmer basis the previously conjectured connection between anomalous heat conductivity and anomalous diffusion.

Anomalous kinetics and transport from 1D self-consistent mode-coupling theory

Lepri S;Livi R;Politi A
2007

Abstract

We study the dynamics of long-wavelength fluctuations in one-dimensional (1D) many-particle systems as described by self-consistent mode-coupling theory. The corresponding non-linear integro-differential equations for the relevant correlators are solved analytically and checked numerically. In particular, we find that the memory functions exhibit a power-law decay accompanied by relatively fast oscillations. Furthermore, the scaling behaviour and, correspondingly, the universality class depend on the order of the leading non-linear term. In the cubic case, both viscosity and thermal conductivity diverge in the thermodynamic limit. In the quartic case, a faster decay of the memory functions leads to a finite viscosity, while the thermal conductivity exhibits an even faster divergence. Finally, our analysis puts on a firmer basis the previously conjectured connection between anomalous heat conductivity and anomalous diffusion.
2007
Istituto dei Sistemi Complessi - ISC
INFM
transport processes
heat transfer (theory)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/151485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 67
social impact