After reviewing the main features of anomalous energy transport in 1D systems, we report simulations performed with chains of noisy anharmonic oscillators. The stochastic terms are added in such a way to conserve total energy and momentum, thus keeping the basic hydrodynamic features of these models. The addition of this 'conservative noise' allows to obtain a more efficient estimate of the power-law divergence of heat conductivity k(L) similar to L-alpha in the limit of small noise and large system size L. By comparing the numerical results with rigorous predictions obtained for the harmonic chain, we show how finite-size and time effects can be effectively controlled. For low noise amplitudes, the a values are close to 1/3 for asymmetric potentials and to 0.4 for symmetric ones. These results support the previously conjectured two-universality-classes scenario.

Anomalous transport and relaxation in classical one-dimensional models

Lepri S;Livi R;Politi A
2007

Abstract

After reviewing the main features of anomalous energy transport in 1D systems, we report simulations performed with chains of noisy anharmonic oscillators. The stochastic terms are added in such a way to conserve total energy and momentum, thus keeping the basic hydrodynamic features of these models. The addition of this 'conservative noise' allows to obtain a more efficient estimate of the power-law divergence of heat conductivity k(L) similar to L-alpha in the limit of small noise and large system size L. By comparing the numerical results with rigorous predictions obtained for the harmonic chain, we show how finite-size and time effects can be effectively controlled. For low noise amplitudes, the a values are close to 1/3 for asymmetric potentials and to 0.4 for symmetric ones. These results support the previously conjectured two-universality-classes scenario.
2007
Istituto dei Sistemi Complessi - ISC
INFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/151486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact