The folding properties of wild type and mutants of domain C5 from cardiac myosin binding protein C have been investigated via molecular dynamics simulations within the framework of a native-centric and coarse-grained model. The relevance of a mutation has been assessed through the shift in the unfolding temperature, the change in the unfolding rate it determines and Phi-values analysis. In a previous paper (Guardiani et al. Biophys J 94:1403-1411, 2008), we performed Kinetic simulations on native contact formation revealing an entropy-driven folding pathway originating near the FG and DE loops. This folding mechanism allowed also a possible interpretation of the molecular impact of the three mutations, Arg14His, Arg28His and Asn115Lys involved in the Familial Hypertrophic Cardiomyopathy. Here we extend that analysis by enriching the mutant pool and we identify a correlation between unfolding rates and the number of native contacts retained in the transition state.

Analyzing pathogenic mutations of C5 domain from cardiac myosin binding protein C through MD simulations

Cecconi F;Livi R
2008

Abstract

The folding properties of wild type and mutants of domain C5 from cardiac myosin binding protein C have been investigated via molecular dynamics simulations within the framework of a native-centric and coarse-grained model. The relevance of a mutation has been assessed through the shift in the unfolding temperature, the change in the unfolding rate it determines and Phi-values analysis. In a previous paper (Guardiani et al. Biophys J 94:1403-1411, 2008), we performed Kinetic simulations on native contact formation revealing an entropy-driven folding pathway originating near the FG and DE loops. This folding mechanism allowed also a possible interpretation of the molecular impact of the three mutations, Arg14His, Arg28His and Asn115Lys involved in the Familial Hypertrophic Cardiomyopathy. Here we extend that analysis by enriching the mutant pool and we identify a correlation between unfolding rates and the number of native contacts retained in the transition state.
2008
Istituto dei Sistemi Complessi - ISC
INFM
FAMILIAL HYPERTROPHIC CARDIOMYOPATHY
MOLECULAR-DYNAMICS
TRANSITION-STATE
STABILITY
MODEL
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/152226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact