Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a Co-60 source and tested in industrial irradiation plants having high-activity Co-60 gamma-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5-50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from -104 to +22 degrees C, dependence on temperature during reading in the range 20-50 degrees C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.

Characterization of a power bipolar transistor as high-dose dosimeter for 1.9-2.2 MeV electron beams

Fuochi P;Lavalle M;Gombia E
2010

Abstract

Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a Co-60 source and tested in industrial irradiation plants having high-activity Co-60 gamma-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5-50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from -104 to +22 degrees C, dependence on temperature during reading in the range 20-50 degrees C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.
2010
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Bipolar transistor; Dosimetry; Electron irradiation; Recombination center
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/152322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact