The separation of chiral compounds is of key importance in different fields of application, e.g., pharmaceutical, industrial, forensic, biological, clinical etc. Capillary electrophoresis (CE) is a powerful analytical method applied in chiral analysis and inclusion-complexation is one of the most frequently used mechanism to improve the selectivity of the enantiomeric separation. Cyclodextrins and their derivatives or modified crown-ethers have been successfully applied in CE for the enantiomeric separation of a wide number of analytes. This review surveys the separation of enantiomers by CE when chiral selectors, forming inclusion-complexation, are used. The control of enantioselectivity can be done carefully by considering several experimental parameters such as chiral selector type and concentration, pH, ionic strength and concentration of the background electrolyte, electroosmotic flow, organic modifier etc. The review presents a list of the latest separation of enantiomers by CE where inclusion-complexation plays a key role in the stereoselective separation mechanism. Ó 1997 Elsevier Science B.V.

Controlling enantioselectivity in chiral capillary electrophoresis with inclusion-complexation

Salvatore Fanali
1997

Abstract

The separation of chiral compounds is of key importance in different fields of application, e.g., pharmaceutical, industrial, forensic, biological, clinical etc. Capillary electrophoresis (CE) is a powerful analytical method applied in chiral analysis and inclusion-complexation is one of the most frequently used mechanism to improve the selectivity of the enantiomeric separation. Cyclodextrins and their derivatives or modified crown-ethers have been successfully applied in CE for the enantiomeric separation of a wide number of analytes. This review surveys the separation of enantiomers by CE when chiral selectors, forming inclusion-complexation, are used. The control of enantioselectivity can be done carefully by considering several experimental parameters such as chiral selector type and concentration, pH, ionic strength and concentration of the background electrolyte, electroosmotic flow, organic modifier etc. The review presents a list of the latest separation of enantiomers by CE where inclusion-complexation plays a key role in the stereoselective separation mechanism. Ó 1997 Elsevier Science B.V.
1997
Istituto per i Sistemi Biologici - ISB (ex IMC)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/15272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact