Introduction: The aim of this study is to investigate the nanocrystallization of steels caused by the transformation from the austenitic to the martensitic phase induced by a severe plastic deformation (SPD) treatment. In this framework, we applied an air blast shot peening treatment, which is a simple protocol widely used for industrial purposes. Methods: AISI 286 and AISI 316 specimens were peened for different times and polished using diamond pastes in order to remove corrugations higher than 1 mu m. The characterization of the steel surfaces was performed by atomic force microscopy (AFM) operating in contact mode. Additional EDXD measurements were performed to confirm the phase transition. Results and Discussion: An AFM-based characterization at nanometric level of the steel surfaces is provided. When the peening exceeds a threshold time that, as expected, depends on the steel composition, a uniform nanostructuration is detected. It is well known that such rearrangement is associated to the growth of a martensitic phase. To date, AFM has been employed in this field only for few applications and to solve specific problems. On the other hand, our results demonstrate that this is a useful technique for the characterization of hardened surfaces, especially when non-destructive sample preparation treatments are required. Moreover, we show that AFM can be a useful tool also for in situ industrial diagnostics of metallic parts.

AFM for diagnosis of nanocrystallization of steels in hardening processes

Girasole M;Longo G;Cricenti A;Serracino M;
2008

Abstract

Introduction: The aim of this study is to investigate the nanocrystallization of steels caused by the transformation from the austenitic to the martensitic phase induced by a severe plastic deformation (SPD) treatment. In this framework, we applied an air blast shot peening treatment, which is a simple protocol widely used for industrial purposes. Methods: AISI 286 and AISI 316 specimens were peened for different times and polished using diamond pastes in order to remove corrugations higher than 1 mu m. The characterization of the steel surfaces was performed by atomic force microscopy (AFM) operating in contact mode. Additional EDXD measurements were performed to confirm the phase transition. Results and Discussion: An AFM-based characterization at nanometric level of the steel surfaces is provided. When the peening exceeds a threshold time that, as expected, depends on the steel composition, a uniform nanostructuration is detected. It is well known that such rearrangement is associated to the growth of a martensitic phase. To date, AFM has been employed in this field only for few applications and to solve specific problems. On the other hand, our results demonstrate that this is a useful technique for the characterization of hardened surfaces, especially when non-destructive sample preparation treatments are required. Moreover, we show that AFM can be a useful tool also for in situ industrial diagnostics of metallic parts.
2008
Istituto di Geologia Ambientale e Geoingegneria - IGAG
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
AFM
Air shot peening
hardening
martensitic steels
nanocrystalline materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/153550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact