We study chemisorbed configurations of C3H6O2 on the extended H:Si(100) surface, through first-principles density-functional calculations in a supercell approach. We demonstrate that oxygen-bonded organic monolayers on this silicon substrate is thermodynamically very stable, and comparing several Si-O-C and Si-C linked configurations, we find that the doubly-O-bonded configuration is favored and should lead to ordered SAMs. We find, moreover, that the Si-O-C bridge in this case does not block charge transfer from surface to molecule.

Ab-initio study of chemisorption reactions for carboxylic acids on hydrogenated silicon surfaces

RUINI ALICE;MOLINARI ELISA;
2004

Abstract

We study chemisorbed configurations of C3H6O2 on the extended H:Si(100) surface, through first-principles density-functional calculations in a supercell approach. We demonstrate that oxygen-bonded organic monolayers on this silicon substrate is thermodynamically very stable, and comparing several Si-O-C and Si-C linked configurations, we find that the doubly-O-bonded configuration is favored and should lead to ordered SAMs. We find, moreover, that the Si-O-C bridge in this case does not block charge transfer from surface to molecule.
2004
INFM
density-functional theory
chemisorption
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/154117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact