Low-density polyethylene/layered double hydroxide (LDPE/LDH) nanocomposites were prepared via melt extrusion using organo-LDH particles and maleic anhydride functionalized polyethylene as compatibilizer. Processing parameters, preparation method, and feed composition were properly modulated until obtaining nanocomposites with intercalated/exfoliated morphologies, and an uniform distribution of nanolayers, as evidenced by X-ray diffraction and transmission electron microscopy analysis. These materials showed a significant improvement of the thermal-oxidative stability, which increased of about 50-C during the first step of the degradation process. Moreover, a remarkable reduction of the oxygen permeability, proportional to the aspect ratio of LDH stacks dispersed in the polyolefin matrix was evidenced, indicating the possible application of nanocomposite films as food packaging materials. As highlighted by dynamic mechanical thermal analysis, interactions at the interface between LDH layers and polymer chains caused a shift of the LDPE b-relaxation toward higher temperatures and a reduction of the peak intensity with respect to the matrix. It was also found that the storage modulus of the nanocomposites was lower in all the temperature range with respect to the reference samples. Finally, on-line capillary rheometer measurements evidenced that the shear thinning behavior of the nanocomposites was dominated by the matrix so that the melt processability was not compromised by the presence of the filler.

Optimization of organo-layered double hydroxide dispersion in LDPE-based nanocomposites

Coiai S;Conzatti L;Stagnaro P;Cicogna F;Passaglia E
2011

Abstract

Low-density polyethylene/layered double hydroxide (LDPE/LDH) nanocomposites were prepared via melt extrusion using organo-LDH particles and maleic anhydride functionalized polyethylene as compatibilizer. Processing parameters, preparation method, and feed composition were properly modulated until obtaining nanocomposites with intercalated/exfoliated morphologies, and an uniform distribution of nanolayers, as evidenced by X-ray diffraction and transmission electron microscopy analysis. These materials showed a significant improvement of the thermal-oxidative stability, which increased of about 50-C during the first step of the degradation process. Moreover, a remarkable reduction of the oxygen permeability, proportional to the aspect ratio of LDH stacks dispersed in the polyolefin matrix was evidenced, indicating the possible application of nanocomposite films as food packaging materials. As highlighted by dynamic mechanical thermal analysis, interactions at the interface between LDH layers and polymer chains caused a shift of the LDPE b-relaxation toward higher temperatures and a reduction of the peak intensity with respect to the matrix. It was also found that the storage modulus of the nanocomposites was lower in all the temperature range with respect to the reference samples. Finally, on-line capillary rheometer measurements evidenced that the shear thinning behavior of the nanocomposites was dominated by the matrix so that the melt processability was not compromised by the presence of the filler.
2011
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_170327-doc_96189.pdf

solo utenti autorizzati

Descrizione: Articolo in formato pdf
Dimensione 571.92 kB
Formato Adobe PDF
571.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/154307
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact