Chiral recognition is a fundamental phenomenon in life sciences based on the enantioselective complexation of a chiral molecule with a chiral selector. The diastereomeric aggregates, formed by complexation, are held together by a different combination of intermolecular forces and are, therefore, endowed with different stability and reactivity. Determination of these forces, which are normally affected in the condensed phase by solvent and supramolecular interactions, requires the generation of the diastereomeric complexes in an isolated state and their kinetic and spectroscopic investigation. This paper concerns enantiodiscrimination of chiral molecules in the gas phase through the application of various ESI-MSn-CID and REMPI-TOF methodologies. The measurement of the fragmentation thresholds of diastereomeric clusters by these techniques allowed to shed light upon the nature and the magnitude of the intrinsic interactions which control their formation and which affect their stability and reactivity.

Gas-phase complexes: noncovalent interactions and stereospecificity

A Paladini;D Catone;
2003

Abstract

Chiral recognition is a fundamental phenomenon in life sciences based on the enantioselective complexation of a chiral molecule with a chiral selector. The diastereomeric aggregates, formed by complexation, are held together by a different combination of intermolecular forces and are, therefore, endowed with different stability and reactivity. Determination of these forces, which are normally affected in the condensed phase by solvent and supramolecular interactions, requires the generation of the diastereomeric complexes in an isolated state and their kinetic and spectroscopic investigation. This paper concerns enantiodiscrimination of chiral molecules in the gas phase through the application of various ESI-MSn-CID and REMPI-TOF methodologies. The measurement of the fragmentation thresholds of diastereomeric clusters by these techniques allowed to shed light upon the nature and the magnitude of the intrinsic interactions which control their formation and which affect their stability and reactivity.
2003
Istituto di Nanotecnologia - NANOTEC
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/154738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact