A new method of preparation of silicon-on-diamond materials is discussed in detail. Pre-characterization of the samples surfaces has been carried out, in order to calculate the optimal pressure for surface contact before the bonding process. The method is based on pulsed laser irradiation, in the 20 ps7 ns range, at a wavelength of 355 nm, for which diamond is transparent and silicon highly absorbing. Under these conditions the material melts locally, within 100 nm at the interface, giving rise to amorphous silicon and silicon carbide. The mechanical strength of the bonding has been assessed by adhesion tests. Preliminary result on resistance to thermal annealing at 400 C in air is also reported. Uniformity of the silicondiamond interface has been verified by scanning electron microscopy. Raman and infrared spectroscopy allowed to detect and estimate quantitatively the amorphous Si and SiC phases at the interface. A finite element simulation has been carried out, taking into account the processes occurring during the laser pulse and the subsequent cooling of the materials. As a result, energy densities per pulse required to melt locally diamond and silicon have been obtained as functions of the pulse width, giving a rationale to the formation of the SiC bond in terms of diamondsilicon inter diffusion. The experimental results of bondings performed at various energy density and pulse widths are in agreement with the model. The experimental results and the theoretical predictions are compared and discussed.
A novel method of preparation of silicon-on-diamond materials
Santoro M;Vannoni M;Ferrari G;Gorelli F;Molesini G;
2010
Abstract
A new method of preparation of silicon-on-diamond materials is discussed in detail. Pre-characterization of the samples surfaces has been carried out, in order to calculate the optimal pressure for surface contact before the bonding process. The method is based on pulsed laser irradiation, in the 20 ps7 ns range, at a wavelength of 355 nm, for which diamond is transparent and silicon highly absorbing. Under these conditions the material melts locally, within 100 nm at the interface, giving rise to amorphous silicon and silicon carbide. The mechanical strength of the bonding has been assessed by adhesion tests. Preliminary result on resistance to thermal annealing at 400 C in air is also reported. Uniformity of the silicondiamond interface has been verified by scanning electron microscopy. Raman and infrared spectroscopy allowed to detect and estimate quantitatively the amorphous Si and SiC phases at the interface. A finite element simulation has been carried out, taking into account the processes occurring during the laser pulse and the subsequent cooling of the materials. As a result, energy densities per pulse required to melt locally diamond and silicon have been obtained as functions of the pulse width, giving a rationale to the formation of the SiC bond in terms of diamondsilicon inter diffusion. The experimental results of bondings performed at various energy density and pulse widths are in agreement with the model. The experimental results and the theoretical predictions are compared and discussed.File | Dimensione | Formato | |
---|---|---|---|
prod_170561-doc_8020.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato
Dimensione
975.48 kB
Formato
Adobe PDF
|
975.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.