In this paper thermal and thermo-oxidative stability of nylon 6 based nanocomposites containing up to 5% by weight of fatty acid coated calcium carbonate (CaCO3) nanoparticles is studied. Thermal stability of compression-moulded samples was evaluated by thermogravimetric analysis (TG) under air and nitrogen atmosphere. Kinetic analysis of TG data was performed by using the Flynn-Wall-Ozawa method. Results show that the presence of coated nanoparticles adversely affects the thermal and thermo-oxidative stability of nylon 6. Kinetic analysis shows that a complex, multi-step decomposition process occurs. Moreover, the presence of nanoparticles do not affect the rate limiting step of nylon 6 decomposition in air, while under nitrogen atmosphere the decomposition process occurs through a diffusion-driven regime in presence of high amounts of CaCO3.
Nylon 6 based nanocomposites: influence of calcium carbonate nanoparticles on the thermal stability
Avella M;Carfagna C;Cerruti P;Errico M E;Gentile G
2006
Abstract
In this paper thermal and thermo-oxidative stability of nylon 6 based nanocomposites containing up to 5% by weight of fatty acid coated calcium carbonate (CaCO3) nanoparticles is studied. Thermal stability of compression-moulded samples was evaluated by thermogravimetric analysis (TG) under air and nitrogen atmosphere. Kinetic analysis of TG data was performed by using the Flynn-Wall-Ozawa method. Results show that the presence of coated nanoparticles adversely affects the thermal and thermo-oxidative stability of nylon 6. Kinetic analysis shows that a complex, multi-step decomposition process occurs. Moreover, the presence of nanoparticles do not affect the rate limiting step of nylon 6 decomposition in air, while under nitrogen atmosphere the decomposition process occurs through a diffusion-driven regime in presence of high amounts of CaCO3.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.