Previous results have shown that the human promyelocytic leukemia HL-60 cell line responds to either proliferating or differentiating stimuli. When these cells are induced to proliferate, protein kinase C (PKC)-beta II migrates toward the nucleus, whereas when they are exposed to differentiating agents, there is a nuclear translocation of the alpha isoform of PKC. As a step toward the elucidation of the early intranuclear events that regulate the proliferation or the differentiation process, we show that in the HL-60 cells, a proliferating stimulus (i.e., insulin-like growth factor-I [IGF-I]) increased nuclear diacylglycerol (DAG) production derived from phosphatidylinositol (4,5) bisphosphate, as indicated by the inhibition exerted by 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine and U-73122 (1-[6((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino) hexyl]-1H-pyrrole-2,5-dione), which are pharmacological inhibitors of phosphoinositide-specific phospholipase C. In contrast, when HL-60 cells were induced to differentiate along the granulocytic lineage by dimethyl sulfoxide, we observed a rise in the nuclear DAG mass, which was sensitive to either neomycin or propranolol, two compounds with inhibitory effect on phospholipase D (PLD)-mediated DAG generation. In nuclei of dimethyl sulfoxide-treated HL-60 cells, we observed a rise in the amount of a 90- kDa PLD, distinct from PLD1 or PLD2. When a phosphatidylinositol (4,5) bisphosphate-derived DAG pool was generated in the nucleus, a selective translocation of PKC-beta II occurred. On the other hand, nuclear DAG derived through PLD, recruited PKC-alpha to the nucleus. Both of these PKC isoforms were phosphorylated on serine residues. These results provide support for the proposal that in the HL-60 cell nucleus there are two independently regulated sources of DAG, both of which are capable of acting as the driving force that attracts to this organelle distinct, DAG- dependent PKC isozymes. Our results assume a particular significance in light of the proposed use of pharmacological inhibitors of PKC-dependent biochemical pathways for the therapy of cancer disease.

Proliferating or differentiating stimuli act on different lipid-dependent signaling pathways in nuclei of human leukemia cells

2002

Abstract

Previous results have shown that the human promyelocytic leukemia HL-60 cell line responds to either proliferating or differentiating stimuli. When these cells are induced to proliferate, protein kinase C (PKC)-beta II migrates toward the nucleus, whereas when they are exposed to differentiating agents, there is a nuclear translocation of the alpha isoform of PKC. As a step toward the elucidation of the early intranuclear events that regulate the proliferation or the differentiation process, we show that in the HL-60 cells, a proliferating stimulus (i.e., insulin-like growth factor-I [IGF-I]) increased nuclear diacylglycerol (DAG) production derived from phosphatidylinositol (4,5) bisphosphate, as indicated by the inhibition exerted by 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine and U-73122 (1-[6((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino) hexyl]-1H-pyrrole-2,5-dione), which are pharmacological inhibitors of phosphoinositide-specific phospholipase C. In contrast, when HL-60 cells were induced to differentiate along the granulocytic lineage by dimethyl sulfoxide, we observed a rise in the nuclear DAG mass, which was sensitive to either neomycin or propranolol, two compounds with inhibitory effect on phospholipase D (PLD)-mediated DAG generation. In nuclei of dimethyl sulfoxide-treated HL-60 cells, we observed a rise in the amount of a 90- kDa PLD, distinct from PLD1 or PLD2. When a phosphatidylinositol (4,5) bisphosphate-derived DAG pool was generated in the nucleus, a selective translocation of PKC-beta II occurred. On the other hand, nuclear DAG derived through PLD, recruited PKC-alpha to the nucleus. Both of these PKC isoforms were phosphorylated on serine residues. These results provide support for the proposal that in the HL-60 cell nucleus there are two independently regulated sources of DAG, both of which are capable of acting as the driving force that attracts to this organelle distinct, DAG- dependent PKC isozymes. Our results assume a particular significance in light of the proposed use of pharmacological inhibitors of PKC-dependent biochemical pathways for the therapy of cancer disease.
2002
TRAPIANTI D'ORGANO E L' IMMUNOCITOLOGIA
leucemie
trasduzione segnale
terapia antitumorale
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact