We have studied the quantum-dynamics of the hydrogen bonds in the guanine-cytosine base pair. Due to the position of hydrogen atoms, different tautomers are possible: the stable Watson-Crick G-C, the imino-enol G*-C*, the imino-enol-imino-enol G(#)-C-# and some zwitterionic structures. The common idea in the literature is that only the G-C and the G*-C* tautomers are stable with an estimate of G-C G*-C* transition probability of 10(-6)-10(-9) by the help of Boltzmann statistics. Here we show a detailed quantum theoretical study that suggests the following conclusion: G-C is the stablest tautomer, some partially charged systems (due to the movement of only one hydrogen atom) are important and a large amount of the imino-enol G*-C* (and less of the imino-enol-imino-enol G(#)-C-# structure) tautomer is present at any time. The corresponding transition probabilities from different tautomers are not due to thermal passage, but they are a pure quantum phenomenon. These large probabilities definitively disprove the idea of these tautomers as mutation points. The mechanisms of passage from the G-C tautomer to the others have also been investigated.

Theoretical investigation of hydrogen transfer mechanism in guanine-cytosine base pair

Giovanni Villani
2006

Abstract

We have studied the quantum-dynamics of the hydrogen bonds in the guanine-cytosine base pair. Due to the position of hydrogen atoms, different tautomers are possible: the stable Watson-Crick G-C, the imino-enol G*-C*, the imino-enol-imino-enol G(#)-C-# and some zwitterionic structures. The common idea in the literature is that only the G-C and the G*-C* tautomers are stable with an estimate of G-C G*-C* transition probability of 10(-6)-10(-9) by the help of Boltzmann statistics. Here we show a detailed quantum theoretical study that suggests the following conclusion: G-C is the stablest tautomer, some partially charged systems (due to the movement of only one hydrogen atom) are important and a large amount of the imino-enol G*-C* (and less of the imino-enol-imino-enol G(#)-C-# structure) tautomer is present at any time. The corresponding transition probabilities from different tautomers are not due to thermal passage, but they are a pure quantum phenomenon. These large probabilities definitively disprove the idea of these tautomers as mutation points. The mechanisms of passage from the G-C tautomer to the others have also been investigated.
2006
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 62
social impact