We present a first-principles description of anisotropic materials characterized by having both weak (dispersionlike) and strong covalent bonds, based on the adiabatic-connection fluctuation-dissipation theorem with density functional theory. For hexagonal boron nitride the in-plane and out-of-plane bonding as well as vibrational dynamics are well described both at equilibrium and when the layers are pulled apart. Bonding in covalent and ionic solids is also described. The formalism allows us to ping down the deficiencies of common exchange-correlation functionals and provides insight toward the inclusion of dispersion interactions into the correlation functional.

First-principles description of correlation effects in layered materials

Marini A;
2006

Abstract

We present a first-principles description of anisotropic materials characterized by having both weak (dispersionlike) and strong covalent bonds, based on the adiabatic-connection fluctuation-dissipation theorem with density functional theory. For hexagonal boron nitride the in-plane and out-of-plane bonding as well as vibrational dynamics are well described both at equilibrium and when the layers are pulled apart. Bonding in covalent and ionic solids is also described. The formalism allows us to ping down the deficiencies of common exchange-correlation functionals and provides insight toward the inclusion of dispersion interactions into the correlation functional.
2006
INFM
EXCHANGE-CORRELATION ENERGY
DENSITY-FUNCTIONAL THEORY
BORON-NITRIDE NANOTUBES
DER-WAALS FORCES
METALLIC SURFACE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact