The two-tone intermodulation distortion arising in MgB2 thin films synthesized by hybrid physical-chemical vapor deposition is studied in order to probe the influence of the two bands on the nonlinear response of this superconductor. The measurements are carried out by using a dielectrically loaded copper cavity operating at 7 GHz. Microwave data on samples having critical temperatures above 41 K, very low resistivity values, and residual resistivity ratio larger than 10 are shown. The dependence of the nonlinear surface losses and of the third order intermodulation products on the power feeding the cavity and on the temperature is analyzed. At low power, the signal arising from distortion versus temperature shows the intrinsic s-wave behavior expected for this compound. Data are compared with measurements performed on Nb and YBa2Cu3O7-delta thin films using the same technique. (c) 2006 American Institute of Physics.

Intrinsic nonlinearity probed by intermodulation distortion microwave measurements on high quality MgB2 thin films

Lamura G;Andreone A;
2006

Abstract

The two-tone intermodulation distortion arising in MgB2 thin films synthesized by hybrid physical-chemical vapor deposition is studied in order to probe the influence of the two bands on the nonlinear response of this superconductor. The measurements are carried out by using a dielectrically loaded copper cavity operating at 7 GHz. Microwave data on samples having critical temperatures above 41 K, very low resistivity values, and residual resistivity ratio larger than 10 are shown. The dependence of the nonlinear surface losses and of the third order intermodulation products on the power feeding the cavity and on the temperature is analyzed. At low power, the signal arising from distortion versus temperature shows the intrinsic s-wave behavior expected for this compound. Data are compared with measurements performed on Nb and YBa2Cu3O7-delta thin films using the same technique. (c) 2006 American Institute of Physics.
2006
INFM
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
SUPERCONDUCTING MICROSTRIP RESONATOR
TEMPERATURE-DEPENDENCE
DEPOSITION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact