We propose and analyze a scheme for the generation of multipartite entangled states in a system of inductively coupled Josephson flux qubits. The qubits have fixed eigenfrequencies during the whole process in order to minimize decoherence effects and their inductive coupling can be turned on and off at will by tuning an external control flux. Within this framework, we will show that a W state in a system of three or more qubits can be generated by exploiting the sequential one by one coupling of the qubits with one of them playing the role of an entanglement mediator.

Generation of multipartite entangled states in Josephson architectures

Migliore Rosanna;
2006

Abstract

We propose and analyze a scheme for the generation of multipartite entangled states in a system of inductively coupled Josephson flux qubits. The qubits have fixed eigenfrequencies during the whole process in order to minimize decoherence effects and their inductive coupling can be turned on and off at will by tuning an external control flux. Within this framework, we will show that a W state in a system of three or more qubits can be generated by exploiting the sequential one by one coupling of the qubits with one of them playing the role of an entanglement mediator.
2006
INFM
QUANTUM-STATE
WIGNER-FUNCTION
CHARGE QUBITS
TOMOGRAPHY
COMPUTATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact