The distribution of inequivalent geometries occurring during self-assembly of the major capsid protein in thermodynamic equilibrium is determined based on a master equation approach. These results are implemented to characterize the assembly of SV40 virus and to obtain information on the putative pathways controlling the progressive build-up of the SV40 capsid. The experimental testability of the predictions is assessed and an analysis of the geometries of the assembly intermediates on the dominant pathways is used to identify targets for anti-viral drug design. (c) 2006 Elsevier Ltd. All rights reserved.

Master equation approach to the assembly of viral capsids

Micheletti C;
2006

Abstract

The distribution of inequivalent geometries occurring during self-assembly of the major capsid protein in thermodynamic equilibrium is determined based on a master equation approach. These results are implemented to characterize the assembly of SV40 virus and to obtain information on the putative pathways controlling the progressive build-up of the SV40 capsid. The experimental testability of the predictions is assessed and an analysis of the geometries of the assembly intermediates on the dominant pathways is used to identify targets for anti-viral drug design. (c) 2006 Elsevier Ltd. All rights reserved.
2006
INFM
VIRUS CAPSIDS
PROTEIN COMPLEXES
MODEL
GROWTH
NUCLEATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact