We report on the realization of what we believe to be a new holographic setup for the fabrication of polymer liquid-crystal polymer-slice diffraction gratings, which utilizes an optical-feedback-driven nanopositioning technique. We have increased the stability of the interference pattern by means of a simple piezomirror used in a feedback configuration to keep constant the phase of the interferometer. The feedback system is driven by a proportional, integral, derivative control software, and the stability degree is controlled by the reference signal coming from a standard test grating. A preliminary experimental characterization indicates that good control and stabilization of parasitic fluctuations of the interference pattern are obtained. (c) 2006 Optical Society of America.
In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure
2006
Abstract
We report on the realization of what we believe to be a new holographic setup for the fabrication of polymer liquid-crystal polymer-slice diffraction gratings, which utilizes an optical-feedback-driven nanopositioning technique. We have increased the stability of the interference pattern by means of a simple piezomirror used in a feedback configuration to keep constant the phase of the interferometer. The feedback system is driven by a proportional, integral, derivative control software, and the stability degree is controlled by the reference signal coming from a standard test grating. A preliminary experimental characterization indicates that good control and stabilization of parasitic fluctuations of the interference pattern are obtained. (c) 2006 Optical Society of America.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.