T helper type 2 (Th2) cell differentiation requires the expression of GATA-3, a transcription factor that allows transcriptional activation of Th2 cytokine genes through chromatin remodelling. We investigated the role of the negative costimulatory receptor cytotoxic T-lymphocyte antigen 4 (CTLA-4) in the regulation of GATA-3 expression, Th2 differentiation and immunoglobulin production during the immune response to allergens. BALB/c mice were immunized with a recombinant major allergenic component of Parietaria judaica pollen, rPar j I, and treated with blocking anti-CTLA-4 or control antibodies. Results showed that in vivo CTLA-4 blockade enhanced the Par j I-specific immunoglobulin E (IgE) serum level. In contrast, Par j I-specific IgG2a serum level was reduced, suggesting that CTLA-4 blockade skewed immunoglobulin production towards interleukin-4 (IL-4) -dependent immunoglobulin isotypes. Consistently, CTLA-4 blockade increased the frequency of Par j I-specific Th2 cells but not Th1 cells, as well as IL-4 and IL-5 but not interferon-c production. Our data also showed that CTLA-4 blockade enhanced the GATA-3 : T-bet messenger RNA ratio. Interestingly, in vivo CTLA-4 blockade did not increase the frequency of GATA-3 protein-expressing cells. In contrast, it enhances GATA-3 protein level per cell. Further, in vitro results show that the anti-CTLA-4 monoclonal antibody, by competing with CD80 for CTLA-4 binding, induced an enhancement in the frequency of IL-4-producing cells that correlates with the increase in GATA-3 protein level per cell. In conclusion, CTLA-4, by affecting the level of GATA-3 per cell, contributes to keeping this factor under the threshold required to become a Th2 effector cell. Consequently, it affects IgE/IgG2a production and contributes to the outcome of allergen-specific immune responses.

CTLA-4 REGULATES ALLERGEN RESPONSE BY MODULATING GATA-3 PROTEIN LEVEL/CELL"

Angela Bonura;Paolo Colombo;
2007

Abstract

T helper type 2 (Th2) cell differentiation requires the expression of GATA-3, a transcription factor that allows transcriptional activation of Th2 cytokine genes through chromatin remodelling. We investigated the role of the negative costimulatory receptor cytotoxic T-lymphocyte antigen 4 (CTLA-4) in the regulation of GATA-3 expression, Th2 differentiation and immunoglobulin production during the immune response to allergens. BALB/c mice were immunized with a recombinant major allergenic component of Parietaria judaica pollen, rPar j I, and treated with blocking anti-CTLA-4 or control antibodies. Results showed that in vivo CTLA-4 blockade enhanced the Par j I-specific immunoglobulin E (IgE) serum level. In contrast, Par j I-specific IgG2a serum level was reduced, suggesting that CTLA-4 blockade skewed immunoglobulin production towards interleukin-4 (IL-4) -dependent immunoglobulin isotypes. Consistently, CTLA-4 blockade increased the frequency of Par j I-specific Th2 cells but not Th1 cells, as well as IL-4 and IL-5 but not interferon-c production. Our data also showed that CTLA-4 blockade enhanced the GATA-3 : T-bet messenger RNA ratio. Interestingly, in vivo CTLA-4 blockade did not increase the frequency of GATA-3 protein-expressing cells. In contrast, it enhances GATA-3 protein level per cell. Further, in vitro results show that the anti-CTLA-4 monoclonal antibody, by competing with CD80 for CTLA-4 binding, induced an enhancement in the frequency of IL-4-producing cells that correlates with the increase in GATA-3 protein level per cell. In conclusion, CTLA-4, by affecting the level of GATA-3 per cell, contributes to keeping this factor under the threshold required to become a Th2 effector cell. Consequently, it affects IgE/IgG2a production and contributes to the outcome of allergen-specific immune responses.
2007
Istituto di biomedicina e di immunologia molecolare - IBIM - Sede Palermo
File in questo prodotto:
File Dimensione Formato  
prod_12143-doc_17160.pdf

accesso aperto

Descrizione: CTLA-4 REGULATES ALLERGEN RESPONSE BY MODULATING GATA-3 PROTEIN LEVEL/CELL
Dimensione 643.74 kB
Formato Adobe PDF
643.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact