This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose an approach based on the definition of an equivalent smooth concave problem. In this way, we move the difficulty of the original problem to that of solving a concave global minimization problem. We present as global optimization algorithm a specific version of the monotonic basin hopping method which employs, as local minimizer, an efficient version of the Frank-Wolfe method. We test our method on various data sets (of small, medium, and large dimensions) involving real-world capital market from major stock markets. The obtained results show the effectiveness of the presented methodology in terms of global optimization. Furthermore, also the out-of-sample performances of the selected portfolios, as measured by Sharpe ratio, appear satisfactory.

A concave optimization-based approach for sparse portfolio selection

Liuzzi G;Sciandrone M
2012

Abstract

This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose an approach based on the definition of an equivalent smooth concave problem. In this way, we move the difficulty of the original problem to that of solving a concave global minimization problem. We present as global optimization algorithm a specific version of the monotonic basin hopping method which employs, as local minimizer, an efficient version of the Frank-Wolfe method. We test our method on various data sets (of small, medium, and large dimensions) involving real-world capital market from major stock markets. The obtained results show the effectiveness of the presented methodology in terms of global optimization. Furthermore, also the out-of-sample performances of the selected portfolios, as measured by Sharpe ratio, appear satisfactory.
2012
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
zero-norm programming
concave programming
Frank-Wolfe method
basin hopping method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/156899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact