Room temperature nanoimprinting lithography is used to realize a distributed feedback laser by direct dry pressing of the conjugated polymer (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]). The laser device exhibits emission at 630 nm with a pump threshold of 25 mu J/cm(2) and a polarization contrast of the emitted light as large as 0.91. Therefore, room temperature nanoimprint lithography turns out to be very effective for producing stable patterns on light-emitting polymers for the one-step fabrication of nanopatterned optoelectronic devices. (c) 2006 American Institute of Physics.

Polymeric distributed feedback lasers by room-temperature nanoimprint lithography

Pisignano D
2006

Abstract

Room temperature nanoimprinting lithography is used to realize a distributed feedback laser by direct dry pressing of the conjugated polymer (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]). The laser device exhibits emission at 630 nm with a pump threshold of 25 mu J/cm(2) and a polarization contrast of the emitted light as large as 0.91. Therefore, room temperature nanoimprint lithography turns out to be very effective for producing stable patterns on light-emitting polymers for the one-step fabrication of nanopatterned optoelectronic devices. (c) 2006 American Institute of Physics.
2006
INFM
CONJUGATED-POLYMER
IMPRINT LITHOGRAPHY
LIGHT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/157389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact