Proteases regulate various aspects of the life cycle in all organisms by cleaving specific peptide bonds. Their action is so central for biochemical processes that at least 2% of any known genome encodes for proteolytic enzymes. Here we show that selected proteases pairs, despite differences in oligomeric state, catalytic residues, and fold, share a common structural organization of functionally relevant regions which are further shown to undergo similar concerted movements. The structural and dynamical similarities found pervasively across evolutionarily distant clans point to common mechanisms for peptide hydrolysis.

Convergent dynamics in the protease enzymatic superfamily

Micheletti C;
2006

Abstract

Proteases regulate various aspects of the life cycle in all organisms by cleaving specific peptide bonds. Their action is so central for biochemical processes that at least 2% of any known genome encodes for proteolytic enzymes. Here we show that selected proteases pairs, despite differences in oligomeric state, catalytic residues, and fold, share a common structural organization of functionally relevant regions which are further shown to undergo similar concerted movements. The structural and dynamical similarities found pervasively across evolutionarily distant clans point to common mechanisms for peptide hydrolysis.
2006
INFM
ELASTIC NETWORK MODEL
MOLECULAR-DYNAMICS
HIV-1 PROTEASE
VIBRATIONAL DYNAMICS
SINGLE-PARAMETER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/157736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact