The existence of global smooth solutions to the multi-dimensional hydrodynamic model for plasmas of electrons and positively charged ions is shown under the assumption that the initial densities are close to a constant. The model consists of the conservation laws for the particle densities and the current densities, coupled to the Poisson equation for the electrostatic potential. Furthermore, it is proved that the particle densities converge exponentially fast to the (constant) steady state. The proof uses a higher-order energy method inspired from extended thermodynamics.

Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas

Ali' G;
2003

Abstract

The existence of global smooth solutions to the multi-dimensional hydrodynamic model for plasmas of electrons and positively charged ions is shown under the assumption that the initial densities are close to a constant. The model consists of the conservation laws for the particle densities and the current densities, coupled to the Poisson equation for the electrostatic potential. Furthermore, it is proved that the particle densities converge exponentially fast to the (constant) steady state. The proof uses a higher-order energy method inspired from extended thermodynamics.
2003
Istituto Applicazioni del Calcolo ''Mauro Picone''
Hydrodynamic model
global existence
exponential stabilit
plasmas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/157789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact