Aquamarine, Maxixe-type (irradiated) beryl, and two types of hydrothermally grown synthetic blue beryl currently available in the marketplace were investigated by classical gemological methods, chemical analysis, and UV-Vis-NIR and mid-IR spectroscopy. These materials may be conclusively identified by a combination of these techniques. The Maxixe-type beryl (like naturalcolor Maxixe beryls) is distinguishable by its unusual dichroism, green UV fluorescence (when present), Fe-free chemical composition, and distinctive UV-Vis-NIR spectrum. The hydrothermal synthetic blue beryls can be discriminated from their natural counterparts on the basis of microscopic features, chemical composition, and visible and infrared spectroscopic features.
Aquamarine, Maxixe-type beryl, and hydrothermal synthetic blue beryl: analysis and identification.
Pavese A;Diella V;
2008
Abstract
Aquamarine, Maxixe-type (irradiated) beryl, and two types of hydrothermally grown synthetic blue beryl currently available in the marketplace were investigated by classical gemological methods, chemical analysis, and UV-Vis-NIR and mid-IR spectroscopy. These materials may be conclusively identified by a combination of these techniques. The Maxixe-type beryl (like naturalcolor Maxixe beryls) is distinguishable by its unusual dichroism, green UV fluorescence (when present), Fe-free chemical composition, and distinctive UV-Vis-NIR spectrum. The hydrothermal synthetic blue beryls can be discriminated from their natural counterparts on the basis of microscopic features, chemical composition, and visible and infrared spectroscopic features.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


