Digital holographic microscopy (DHM) can be described as a non-invasive metrological tool for inspection and characterization of microelectromechanical structures (MEMS). DHM is a quick, non-contact and non-invasive technique that can offer a high resolution in both lateral and vertical directions. It has been employed for the characterization of the undesired out-of-plane deformations due to the residual stresses introduced by technological processes. The characterization of these deformations is helpful in studying and understanding the effect of residual stress on the deformation of a single microstructure. To that end, MEMS with different geometries and shapes, such as cantilever beams, bridges and membranes, have been characterized. Moreover, DHM has been applied efficiently to evaluate variations of the structure profile due to some external effects. As an example, the characterization of a cantilever subjected to a thermal process has been described. The results reported show that DHM is a useful non-invasive method for characterizing and developing reliable MEMS.

A digital holographic microscope for complete characterization of microelectromechanical systems

Coppola G;Iodice M;De Nicola S;Finizio A;
2004

Abstract

Digital holographic microscopy (DHM) can be described as a non-invasive metrological tool for inspection and characterization of microelectromechanical structures (MEMS). DHM is a quick, non-contact and non-invasive technique that can offer a high resolution in both lateral and vertical directions. It has been employed for the characterization of the undesired out-of-plane deformations due to the residual stresses introduced by technological processes. The characterization of these deformations is helpful in studying and understanding the effect of residual stress on the deformation of a single microstructure. To that end, MEMS with different geometries and shapes, such as cantilever beams, bridges and membranes, have been characterized. Moreover, DHM has been applied efficiently to evaluate variations of the structure profile due to some external effects. As an example, the characterization of a cantilever subjected to a thermal process has been described. The results reported show that DHM is a useful non-invasive method for characterizing and developing reliable MEMS.
2004
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto per la Microelettronica e Microsistemi - IMM
microscopy
holography
microelectromechanical
MEMES
OPTOELECTRONICS
File in questo prodotto:
File Dimensione Formato  
prod_170090-doc_36803.pdf

solo utenti autorizzati

Descrizione: Meas_Sci_MEMS2004
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 877.71 kB
Formato Adobe PDF
877.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 186
  • ???jsp.display-item.citation.isi??? 162
social impact