The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasiparticle can be introduced without Atkins's idea about the solidification of liquid He-4 in the close vicinity of an ion (the so-called 'snowball' model). Moreover, in addition to the generalization of Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal-fluid contribution divergency and the way of the corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.

Effective mass of a charged carrier in a nonpolar liquid: Snowball effect in superfluid helium

2007

Abstract

The problem of a correct definition of the charged carrier effective mass in superfluid helium is revised. It is shown that the effective mass of such a quasiparticle can be introduced without Atkins's idea about the solidification of liquid He-4 in the close vicinity of an ion (the so-called 'snowball' model). Moreover, in addition to the generalization of Atkins's model, the charged carrier effective mass formation is considered within the framework of the two-fluid scenario. The physical reasons of the normal-fluid contribution divergency and the way of the corresponding regularization procedure are discussed. Agreement between the theory and the available experimental data is found in a wide range of temperatures.
2007
INFM
IONS
SURFACE
HE-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact