We describe a method for distinguishing between minor groove binders and base intercalators that is based on measurements of the fluorescence lifetime of a donor (D) in the presence of an acceptor (A). The D-A pair is separated by a short double helix DNA with which the ligands interact. By plotting the D fluorescence lifetime as a function of the ligand-to-base pair concentration ratio we find a clear signature that distinguishes between the two binding mechanisms: minor groove binding induces an asymptotic decrease of the D fluorescence lifetime, while intercalation gives a monotonically increasing lifetime and the appearance of an additional short lifetime. We assayed Quinacrine, Hoechst and 4'-6'diamidine-2-phenyl indole, which in control experiments performed on oligodeoxyribonucleotides (oligos) lacking the A are demonstrated not to interfere with the D fluorescence. The changes in fluorescence lifetimes measured in the case of dual-labeled oligos are thus caused by structural changes in the DNA that modify the D-A distance. The appearance of the short-lived transient in the fluorescence decay of Ds attached to dual-labeled oligos upon binding of an intercalator can be interpreted as denaturation.

DNA-ligand binding mode discrimination by characterizing fluorescence resonance energy transfer through lifetime measurements with picosecond resolution

Bondani M;
2008

Abstract

We describe a method for distinguishing between minor groove binders and base intercalators that is based on measurements of the fluorescence lifetime of a donor (D) in the presence of an acceptor (A). The D-A pair is separated by a short double helix DNA with which the ligands interact. By plotting the D fluorescence lifetime as a function of the ligand-to-base pair concentration ratio we find a clear signature that distinguishes between the two binding mechanisms: minor groove binding induces an asymptotic decrease of the D fluorescence lifetime, while intercalation gives a monotonically increasing lifetime and the appearance of an additional short lifetime. We assayed Quinacrine, Hoechst and 4'-6'diamidine-2-phenyl indole, which in control experiments performed on oligodeoxyribonucleotides (oligos) lacking the A are demonstrated not to interfere with the D fluorescence. The changes in fluorescence lifetimes measured in the case of dual-labeled oligos are thus caused by structural changes in the DNA that modify the D-A distance. The appearance of the short-lived transient in the fluorescence decay of Ds attached to dual-labeled oligos upon binding of an intercalator can be interpreted as denaturation.
2008
INFM
SINGLE-MOLECULE
MINOR-GROOVE
4',6-DIAMIDINO-2-PHENYLINDOLE DAPI
OLIGONUCLEOTIDE PROBES
NETROPSIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact