One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid He-4, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices(1). The achievement of Bose-Einstein condensation in dilute atomic gases(2) provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons has been reported recently(3-6). Polaritons are strongly interacting light-matter quasiparticles that occur naturally in semiconductor microcavities in the strong-coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross-Pitaevskii equation. Whereas the observation of quantized vortices is, in itself, not sufficient for establishing the superfluid nature of the non-equilibrium polariton condensate, it suggests parallels between our system and conventional superfluids.

Quantized vortices in an exciton-polariton condensate

Carusotto I;
2008

Abstract

One of the most striking quantum effects in an interacting Bose gas at low temperature is superfluidity. First observed in liquid He-4, this phenomenon has been intensively studied in a variety of systems for its remarkable features such as the persistence of superflows and the proliferation of quantized vortices(1). The achievement of Bose-Einstein condensation in dilute atomic gases(2) provided the opportunity to observe and study superfluidity in an extremely clean and well-controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons has been reported recently(3-6). Polaritons are strongly interacting light-matter quasiparticles that occur naturally in semiconductor microcavities in the strong-coupling regime and constitute an interesting example of composite bosons. Here, we report the observation of spontaneous formation of pinned quantized vortices in the Bose-condensed phase of a polariton fluid. Theoretical insight into the possible origin of such vortices is presented in terms of a generalized Gross-Pitaevskii equation. Whereas the observation of quantized vortices is, in itself, not sufficient for establishing the superfluid nature of the non-equilibrium polariton condensate, it suggests parallels between our system and conventional superfluids.
2008
INFM
BOSE-EINSTEIN CONDENSATE
MICROCAVITY POLARITONS
OPTICAL VORTICES
VORTEX
INTERFERENCE
File in questo prodotto:
File Dimensione Formato  
prod_2845-doc_12565.pdf

accesso aperto

Descrizione: Quantized vortices in an exciton-polariton condensate
Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 431.43 kB
Formato Adobe PDF
431.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 669
  • ???jsp.display-item.citation.isi??? 629
social impact