The electronic and ionic structures of warm expanded aluminum are determined self-consistently using an average-atom formalism based on density-functional theory and Gibbs-Bogolyubov inequality. Ion configurations are generated using a least-squares fit of the pair distribution function deduced from the average-atom model calculations. The electrical conductivity is computed from the Kubo-Greenwood formula for the optical conductivity implemented in a molecular dynamics scheme based on density-functional theory. This method allows us to go beyond the Ziman approach used in the average-atom formalism. Moreover, it is faster than performing quantum molecular dynamics simulations to obtain ion configurations for the conductivity calculation. Numerical results and comparisons with experiments are presented and discussed.

Electrical conductivity of warm expanded Al

2006

Abstract

The electronic and ionic structures of warm expanded aluminum are determined self-consistently using an average-atom formalism based on density-functional theory and Gibbs-Bogolyubov inequality. Ion configurations are generated using a least-squares fit of the pair distribution function deduced from the average-atom model calculations. The electrical conductivity is computed from the Kubo-Greenwood formula for the optical conductivity implemented in a molecular dynamics scheme based on density-functional theory. This method allows us to go beyond the Ziman approach used in the average-atom formalism. Moreover, it is faster than performing quantum molecular dynamics simulations to obtain ion configurations for the conductivity calculation. Numerical results and comparisons with experiments are presented and discussed.
2006
INFM
MOLECULAR-DYNAMICS
ALUMINUM PLASMAS
DENSE
RESISTIVITY
STATE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 28
social impact