The diphosphine 3,5-dideoxy-1,2-O-isopropylidene-3,5-bis(di(2-methoxyphenyl)phosphanyl)-a-Dxylofuranose (o-MeO-xylophos), which differs from the known 3,5-dideoxy-1,2-O-isopropylidene-3,5- bis(diphenylphosphanyl)-a-D-xylofuranose (xylophos) by the presence of 2-methoxy substituents on the P-aryl rings, has been synthesized and characterized. These two ligands have been employed to stabilize the PdII complexes [PdCl2(o-MeO-xylophos)] (1a), [PdCl2(xylophos)] (2a), [PdClMe(o-MeO-xylophos)] (1b), [PdClMe(xylophos)] (2b), [Pd(OTs)(H2O)(o-MeO-xylophos)](OTs) (1c) and [Pd(OTs)(H2O)(xylophos)](OTs) (2c). All complexes have been characterized by multinuclear-NMR spectroscopy. The solid-state structure of 1a has been determined by a single crystal X-ray analysis. The Pd-aqua complexes 1c and 2c have been employed to catalyse the CO-ethene and CO-propene copolymerization as well as the CO-ethene-propene terpolymerization reaction in MeOH. The catalytic activity and the molecular weight of the polyketones have been compared to those of the products obtained with analogous catalysts, [Pd(H2O)2(o-MeO-dppp)](OTs)2 (3c) and [Pd(H2O)(OTs)(dppp)](OTs) (4c), bearing the classical 1,3-bis(diphenylphoshino)propane ligand (dppp). Under comparable catalytic conditions, all catalysts produce structurally similar polymeric materials, with 1c yielding the largest propene incorporation as well as the highest productivity of low-molecular-weight terpolymers.

Synthesis of palladium(II) complexes containing a new ±-D-xylofuranose-modified diphosphine and their application as catalyst precursors in the co- and terpolymerization of CO-ethene and propene

Bianchini Claudio;Meli Andrea;Oberhauser Werner
2008

Abstract

The diphosphine 3,5-dideoxy-1,2-O-isopropylidene-3,5-bis(di(2-methoxyphenyl)phosphanyl)-a-Dxylofuranose (o-MeO-xylophos), which differs from the known 3,5-dideoxy-1,2-O-isopropylidene-3,5- bis(diphenylphosphanyl)-a-D-xylofuranose (xylophos) by the presence of 2-methoxy substituents on the P-aryl rings, has been synthesized and characterized. These two ligands have been employed to stabilize the PdII complexes [PdCl2(o-MeO-xylophos)] (1a), [PdCl2(xylophos)] (2a), [PdClMe(o-MeO-xylophos)] (1b), [PdClMe(xylophos)] (2b), [Pd(OTs)(H2O)(o-MeO-xylophos)](OTs) (1c) and [Pd(OTs)(H2O)(xylophos)](OTs) (2c). All complexes have been characterized by multinuclear-NMR spectroscopy. The solid-state structure of 1a has been determined by a single crystal X-ray analysis. The Pd-aqua complexes 1c and 2c have been employed to catalyse the CO-ethene and CO-propene copolymerization as well as the CO-ethene-propene terpolymerization reaction in MeOH. The catalytic activity and the molecular weight of the polyketones have been compared to those of the products obtained with analogous catalysts, [Pd(H2O)2(o-MeO-dppp)](OTs)2 (3c) and [Pd(H2O)(OTs)(dppp)](OTs) (4c), bearing the classical 1,3-bis(diphenylphoshino)propane ligand (dppp). Under comparable catalytic conditions, all catalysts produce structurally similar polymeric materials, with 1c yielding the largest propene incorporation as well as the highest productivity of low-molecular-weight terpolymers.
2008
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact