The 13C NMR experimental study presented investigates the absorption of CO2 by a series of primary, secondary and tertiary alkanolamines in aqueous solution. The absorption experiments were made at room temperature with four different amine concentrations in the range 0.167-0.667 M (1.01-5.88 wt%). As inferred by 13C NMR spectral analysis, the formation of carbamate increases with increasing amine concentration following the order secondary amine < primary amine. Moreover, it has been shown that carbamate reduces the CO2 absorption efficiency. A considerable physical absorption (10-20%) contributes to the loading capacity of the amines and partially compensates for the yield of chemical capture, which turned out to be poorer than was expected theoretically. Quite unexpectedly, carbamate was also produced by an endothermic reaction during the thermal CO2 desorption process which regenerated the amines (primary and secondary amines). In the case of the secondary amine 2-(methylamino)ethanol (MMEA), the amount of carbamate at the end of the desorption process is greater than the amount found at the end of the absorption step, thus reducing the desorption efficiency of the secondary amine in comparison to both primary and tertiary amines. Five cycles of absorption- desorption tests were carried out to verify the feasibility of regenerated amines for reuse. Our results indicate that absorption efficiency and loading capacity of the regenerated amine solutions remain essentially constant during the second to the fifth absorption-desorption experiments, but they both decrease slightly when compared to the initial amine.

A 13C NMR study of the carbon dioxide absorption and desorption equilibria by aqueous 2-aminoethanol and N-methyl-substituted 2-aminoethanol

Peruzzini Maurizio;
2009

Abstract

The 13C NMR experimental study presented investigates the absorption of CO2 by a series of primary, secondary and tertiary alkanolamines in aqueous solution. The absorption experiments were made at room temperature with four different amine concentrations in the range 0.167-0.667 M (1.01-5.88 wt%). As inferred by 13C NMR spectral analysis, the formation of carbamate increases with increasing amine concentration following the order secondary amine < primary amine. Moreover, it has been shown that carbamate reduces the CO2 absorption efficiency. A considerable physical absorption (10-20%) contributes to the loading capacity of the amines and partially compensates for the yield of chemical capture, which turned out to be poorer than was expected theoretically. Quite unexpectedly, carbamate was also produced by an endothermic reaction during the thermal CO2 desorption process which regenerated the amines (primary and secondary amines). In the case of the secondary amine 2-(methylamino)ethanol (MMEA), the amount of carbamate at the end of the desorption process is greater than the amount found at the end of the absorption step, thus reducing the desorption efficiency of the secondary amine in comparison to both primary and tertiary amines. Five cycles of absorption- desorption tests were carried out to verify the feasibility of regenerated amines for reuse. Our results indicate that absorption efficiency and loading capacity of the regenerated amine solutions remain essentially constant during the second to the fifth absorption-desorption experiments, but they both decrease slightly when compared to the initial amine.
2009
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 112
  • ???jsp.display-item.citation.isi??? ND
social impact