The wetting characteristics of surfaces of polymers doped with photochromic spiropyran molecules can be tuned when irradiated with laser beams of properly chosen photon energy. In particular, UV laser pulses at 308 nm are responsible for the enhancement of the hydrophilicity of the surfaces, since the embedded non-polar spiropyran molecules convert to their polar merocyanine isomers upon UV absorption. The process is reversed upon irradiation with green laser pulses at 532 nm. When the photochromic-polymeric surfaces are micropatterned using soft lithography or photo-polymerisation techniques, they can change their wettability towards a more hydrophobic or more hydrophilic behaviour depending on the dimensions of the patterned features and on the hydrophilicity-hydrophobicity of the flat surface. Furthermore, the light-induced wettability variations on these structured surfaces are greatly enhanced compared to the flat surfaces. This significant increase to the wettability changes is attributed to the combination of the photochromic interconversions upon laser irradiation together with the photoinduced reversible volume changes of the patterned features.

Combination of microstructuring and laser-light irradiation for the reversible wettability of photosensitised polymer surfaces

Pisignano D;
2006

Abstract

The wetting characteristics of surfaces of polymers doped with photochromic spiropyran molecules can be tuned when irradiated with laser beams of properly chosen photon energy. In particular, UV laser pulses at 308 nm are responsible for the enhancement of the hydrophilicity of the surfaces, since the embedded non-polar spiropyran molecules convert to their polar merocyanine isomers upon UV absorption. The process is reversed upon irradiation with green laser pulses at 532 nm. When the photochromic-polymeric surfaces are micropatterned using soft lithography or photo-polymerisation techniques, they can change their wettability towards a more hydrophobic or more hydrophilic behaviour depending on the dimensions of the patterned features and on the hydrophilicity-hydrophobicity of the flat surface. Furthermore, the light-induced wettability variations on these structured surfaces are greatly enhanced compared to the flat surfaces. This significant increase to the wettability changes is attributed to the combination of the photochromic interconversions upon laser irradiation together with the photoinduced reversible volume changes of the patterned features.
2006
INFM
SPIROPYRAN
ISOMERIZATION
BEHAVIOR
SCALE
WATER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact