A comparison is made between the Pruitt and Doorenbos version of an hourly Penman-type equation, the Food and Agriculture Organization (FAO) hourly Penman-Monteith equation, and an independent measure of reference evapotranspiration (ET0) from lysimeter data. Reducing the canopy resistance improved the hourly FAO Penman-Monteith estimates. Daytime soil heat flux density is estimated as 10% of net radiation in the FAO hourly Penman-Monteith equation; however, the measured soil heat flux density under grass that was never shorter than 0.10 m in this study was between 3% and 5% of net radiation. The daytime totals of hourly ET0 from the hourly Penman-Monteith and Pruitt-Doorenbos equations and ET0 from the 24-h FAO Penman-Monteith equation were computed using data from five Italian and five Californian stations. A comparison showed that all of the equations gave acceptable results. The Pruitt-Doorenbos equation may slightly over-estimate ET0 in conditions of summertime cold air advection.

An evaluation of common evapotranspiration equations

Duce P;
1999

Abstract

A comparison is made between the Pruitt and Doorenbos version of an hourly Penman-type equation, the Food and Agriculture Organization (FAO) hourly Penman-Monteith equation, and an independent measure of reference evapotranspiration (ET0) from lysimeter data. Reducing the canopy resistance improved the hourly FAO Penman-Monteith estimates. Daytime soil heat flux density is estimated as 10% of net radiation in the FAO hourly Penman-Monteith equation; however, the measured soil heat flux density under grass that was never shorter than 0.10 m in this study was between 3% and 5% of net radiation. The daytime totals of hourly ET0 from the hourly Penman-Monteith and Pruitt-Doorenbos equations and ET0 from the 24-h FAO Penman-Monteith equation were computed using data from five Italian and five Californian stations. A comparison showed that all of the equations gave acceptable results. The Pruitt-Doorenbos equation may slightly over-estimate ET0 in conditions of summertime cold air advection.
1999
Istituto di Biometeorologia - IBIMET - Sede Firenze
Reference evapotranspiration
Penman-type equation
lysimeter data
comparison
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/158657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 134
social impact