Climate and meteorological conditions greatly affect agricultural activities, modifying plant responses and determining the quantity and the quality of production. In this respect, the aim of this research was to analyze the quality of winter durum wheat (Triticum turgidum L. var. durum), in terms of protein content through the use of meteorological information. Meteorological conditions were described utilizing both local weather station data (air temperature, cumulated precipitation) and large-scale information available freely on the internet, such as geopotential height (GPH), sea surface temperature (SST), and the North Atlantic Oscillation (NAO) index. The analysis was carried out for the period 1997-2009 in the Tuscany region, Central Italy. Grain protein was positively correlated with air temperature during the February to June period, and negatively with cumulative precipitation during the entire period from November to June. Protein content was also negatively correlated with 500 hPa GPH over Gibraltar and North-Western Africa during the March to June period and with the SST of the Atlantic Ocean south-west of the Canary Islands during the January to June period. Finally, with regard to the NAO, winter durum wheat quality was positively correlated with the specific index for several months, in particular during the winter period. These results demonstrate that precipitation and air temperature over the production area represent two crucial variables driving the vegeto-productive responses of winter durum wheat. On the other hand, the use of large-scale meteorological information showed great potential from the perspective of a local quality forecast system setup.
The influence of climate on durum wheat quality in Tuscany, Central Italy
Grifoni D;Zipoli G;Orlandini S
2011
Abstract
Climate and meteorological conditions greatly affect agricultural activities, modifying plant responses and determining the quantity and the quality of production. In this respect, the aim of this research was to analyze the quality of winter durum wheat (Triticum turgidum L. var. durum), in terms of protein content through the use of meteorological information. Meteorological conditions were described utilizing both local weather station data (air temperature, cumulated precipitation) and large-scale information available freely on the internet, such as geopotential height (GPH), sea surface temperature (SST), and the North Atlantic Oscillation (NAO) index. The analysis was carried out for the period 1997-2009 in the Tuscany region, Central Italy. Grain protein was positively correlated with air temperature during the February to June period, and negatively with cumulative precipitation during the entire period from November to June. Protein content was also negatively correlated with 500 hPa GPH over Gibraltar and North-Western Africa during the March to June period and with the SST of the Atlantic Ocean south-west of the Canary Islands during the January to June period. Finally, with regard to the NAO, winter durum wheat quality was positively correlated with the specific index for several months, in particular during the winter period. These results demonstrate that precipitation and air temperature over the production area represent two crucial variables driving the vegeto-productive responses of winter durum wheat. On the other hand, the use of large-scale meteorological information showed great potential from the perspective of a local quality forecast system setup.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.