Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed [1] self-organized model for the evolution of complex networks. Vertices of the network are characterized by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen [2] model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model [3]. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.
A self-organized model for network evolution
Caldarelli G;
2008
Abstract
Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed [1] self-organized model for the evolution of complex networks. Vertices of the network are characterized by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen [2] model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model [3]. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.