We propose to probe the distribution of current fluctuations by means of the escape probability histogram of a Josephson junction (JJ), obtained using very short bias current pulses in the adiabatic regime, where the low-frequency component of the current fluctuations plays a crucial role. We analyze the effect of the third cumulant on the histogram in the small skewness limit, and address two concrete examples assuming realistic parameters for the JJ. In the first one we study the effects due to fluctuations produced by a tunnel junction, finding that the signature of higher cumulants can be detected by taking the derivative of the escape probability with respect to current. In such a realistic situation, though, the determination of the whole distribution of current fluctuations requires an amplification of the cumulants. As a second example we consider magnetic flux fluctuations acting on a SQUID produced by a random telegraph source of noise. Copyright (C) EPLA, 2008.

Measuring the distribution of current fluctuations through a Josephson junction with very short current pulses

Taddei F;
2008

Abstract

We propose to probe the distribution of current fluctuations by means of the escape probability histogram of a Josephson junction (JJ), obtained using very short bias current pulses in the adiabatic regime, where the low-frequency component of the current fluctuations plays a crucial role. We analyze the effect of the third cumulant on the histogram in the small skewness limit, and address two concrete examples assuming realistic parameters for the JJ. In the first one we study the effects due to fluctuations produced by a tunnel junction, finding that the signature of higher cumulants can be detected by taking the derivative of the escape probability with respect to current. In such a realistic situation, though, the determination of the whole distribution of current fluctuations requires an amplification of the cumulants. As a second example we consider magnetic flux fluctuations acting on a SQUID produced by a random telegraph source of noise. Copyright (C) EPLA, 2008.
2008
INFM
NOISE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact