Vitrification in colloidal systems typically occurs at high densities driven by sharply varying, short-ranged interactions. The possibility of glassy behavior arising from smoothly varying, long-ranged particle interactions has received relatively little attention. Here we investigate the behavior of screened charged particles, and explicitly demonstrate that these systems exhibit glassy properties in the regime of low temperature and low density. Properties close to this low-density (Wigner) glass transition share many features with their hard-sphere counterparts, but differ in quantitative aspects that may be accounted for via microscopic theoretical considerations.
Numerical investigation of glassy dynamics in low-density systems
Emanuela Zaccarelli;Francesco Sciortino;
2008
Abstract
Vitrification in colloidal systems typically occurs at high densities driven by sharply varying, short-ranged interactions. The possibility of glassy behavior arising from smoothly varying, long-ranged particle interactions has received relatively little attention. Here we investigate the behavior of screened charged particles, and explicitly demonstrate that these systems exhibit glassy properties in the regime of low temperature and low density. Properties close to this low-density (Wigner) glass transition share many features with their hard-sphere counterparts, but differ in quantitative aspects that may be accounted for via microscopic theoretical considerations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.