We present two-photon excitation luminescence experiments on carbon nanotubes which show the excitonic origin of the optical excitations. The two-photon allowed exciton state, which has even parity under rotation about the U-axis, is roughly 300 meV above the one-photon active, odd-parity state. This indicates exciton binding energies on the order of 400 meV for nanotubes with diameters around 8 A. Ab-initio calculations of the exciton wavefunctions and energies are in good agreement with our experimental results, confirming the predictions on the symmetry of the exciton states. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Excitons in carbon nanotubes

Ruini A;
2006

Abstract

We present two-photon excitation luminescence experiments on carbon nanotubes which show the excitonic origin of the optical excitations. The two-photon allowed exciton state, which has even parity under rotation about the U-axis, is roughly 300 meV above the one-photon active, odd-parity state. This indicates exciton binding energies on the order of 400 meV for nanotubes with diameters around 8 A. Ab-initio calculations of the exciton wavefunctions and energies are in good agreement with our experimental results, confirming the predictions on the symmetry of the exciton states. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2006
INFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact