A generalized approximation scheme is proposed to describe the dynamics of the spin-boson problem. Being nonperturbative in the coupling strength nor in the tunneling frequency, it gives reliable results over a wide regime of temperatures and coupling strength to the thermal environment for a large class of bath spectral densities. We use a path-integral approach and start from the exact solution for the two-level system population difference in the form of a generalized master equation (GME). Then, we approximate interblip and blip-sojourn interactions up to linear order, while retaining all intrablip correlations to find the kernels entering the GME in analytical form. Our approximation scheme, which we call weakly interacting blip approximation, fully agrees with conventional perturbative approximations in the tunneling matrix element (noninteracting-blip approximation) or in the system-bath coupling strength in the proper parameter regime.

Spin-boson dynamics beyond conventional perturbation theories

Paladino E;
2007

Abstract

A generalized approximation scheme is proposed to describe the dynamics of the spin-boson problem. Being nonperturbative in the coupling strength nor in the tunneling frequency, it gives reliable results over a wide regime of temperatures and coupling strength to the thermal environment for a large class of bath spectral densities. We use a path-integral approach and start from the exact solution for the two-level system population difference in the form of a generalized master equation (GME). Then, we approximate interblip and blip-sojourn interactions up to linear order, while retaining all intrablip correlations to find the kernels entering the GME in analytical form. Our approximation scheme, which we call weakly interacting blip approximation, fully agrees with conventional perturbative approximations in the tunneling matrix element (noninteracting-blip approximation) or in the system-bath coupling strength in the proper parameter regime.
2007
INFM
DISSIPATIVE 2-STATE SYSTEM
TUNNELING DYNAMICS
OHMIC DISSIPATION
ELECTRON-TRANSFER
2-LEVEL SYSTEM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159334
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact