Confined electrodeposition can be achieved through the use of suitable templates, bywhich the electrodeposition occurs in natural or artificial holes of an insulating layer on a conducting substrate.Here, we present the electrodeposition of CdS on the holes left by the selective desorption of 3-mercaptopropionic acid (MPA) from a binary self-assembled monolayer (SAM) formed on Ag(111) with 1-octanethiol (OT). The electrodeposition of a compound is quite demanding, since it requires the right stoichiometry. In addition, the surface underpotential deposition phenomena exploited by electrochemical atomic layer epitaxy (ECALE) technique ensures that the surface available for electrodeposition after the selective desorption is still Ag(111). Parallel electrochemical experiments show that the amount of compound electrodeposited is consistent with this free Ag(111) surface, and the morphological analysis performed both by atomic force microscopy (AFM) and by lateral force microscopy (LFM) confirm the electrochemical data.

Confined electrodeposition using a template-assisted procedure based on the selective

Bianchini C;Vizza F
2010

Abstract

Confined electrodeposition can be achieved through the use of suitable templates, bywhich the electrodeposition occurs in natural or artificial holes of an insulating layer on a conducting substrate.Here, we present the electrodeposition of CdS on the holes left by the selective desorption of 3-mercaptopropionic acid (MPA) from a binary self-assembled monolayer (SAM) formed on Ag(111) with 1-octanethiol (OT). The electrodeposition of a compound is quite demanding, since it requires the right stoichiometry. In addition, the surface underpotential deposition phenomena exploited by electrochemical atomic layer epitaxy (ECALE) technique ensures that the surface available for electrodeposition after the selective desorption is still Ag(111). Parallel electrochemical experiments show that the amount of compound electrodeposited is consistent with this free Ag(111) surface, and the morphological analysis performed both by atomic force microscopy (AFM) and by lateral force microscopy (LFM) confirm the electrochemical data.
2010
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact