The adsorption and electrooxidation pathways of ethylene glycol (EG) on polycrystalline palladium surfaces have been investigated in both alkaline and acidic media by in situ FTIR spectroscopy in conjunction with cyclic voltammetry. Palladium exhibits a high electrocatalytic activity in alkaline solution with low onset oxidation potentials and high current densities,depending on the pH, as well as on the supporting electrolyte. Higher potentials are required for EG oxidation in acidic solutions, where the catalytic performance decreases with increasing the pH. The products and intermediates of EG oxidation on Pd are influenced by the pH. In alkaline media, both C2 species (glycolate, glyoxal, glyoxylate and oxalate) and C1 species (formate and carbonate) are formed in mutual concentrations depending on the pH.In contrast, CO2 is selectively produced in acidic aqueous solution

In-situ FTIR spectroelectrochemical study on mechanism of ethylene glycol electrocatalytic oxidation at Pd electrode

Bianchini C;Vizza F
2011

Abstract

The adsorption and electrooxidation pathways of ethylene glycol (EG) on polycrystalline palladium surfaces have been investigated in both alkaline and acidic media by in situ FTIR spectroscopy in conjunction with cyclic voltammetry. Palladium exhibits a high electrocatalytic activity in alkaline solution with low onset oxidation potentials and high current densities,depending on the pH, as well as on the supporting electrolyte. Higher potentials are required for EG oxidation in acidic solutions, where the catalytic performance decreases with increasing the pH. The products and intermediates of EG oxidation on Pd are influenced by the pH. In alkaline media, both C2 species (glycolate, glyoxal, glyoxylate and oxalate) and C1 species (formate and carbonate) are formed in mutual concentrations depending on the pH.In contrast, CO2 is selectively produced in acidic aqueous solution
2011
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact