In this Letter we show how, for small values of the Fermi energy compared to the spin-orbit splitting of Rashba type, a topological change of the Fermi surface leads to an effective reduction of the dimensionality in the electronic density of states in the low charge density regime. We investigate its consequences on the onset of the superconducting instability. We show that the superconducting critical temperature is significantly tuned in this regime by the spin-orbit coupling. We suggest that materials with strong spin-orbit coupling are good candidates for enhanced superconductivity.
Topological change of the fermi surface in low-density Rashba gases: Application to superconductivity
Cappelluti E;
2007
Abstract
In this Letter we show how, for small values of the Fermi energy compared to the spin-orbit splitting of Rashba type, a topological change of the Fermi surface leads to an effective reduction of the dimensionality in the electronic density of states in the low charge density regime. We investigate its consequences on the onset of the superconducting instability. We show that the superconducting critical temperature is significantly tuned in this regime by the spin-orbit coupling. We suggest that materials with strong spin-orbit coupling are good candidates for enhanced superconductivity.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.