The chemiluminescence (CL) accompanying the oxidation of both polyamide 6,6 and a model diamide with no reactive endgroups is reported. CL emission for neat diamide starts after melting of crystallites, and the shapes of the intensity-time curve show a sigmoidal behaviour, typical of the chain oxidation of organic compounds. Adipic acid shortens induction period of chemiluminescence increase. A bimolecular hydroperoxide decomposition model can successfully describe the kinetic runs of CL. Polyamide 6,6 CL runs are apparently composed of 3 different kinetic stages: a decay from an initial CL value, due to the termination of peroxyl radicals being trapped in the polymer after processing and storage (stage I), a sudden increase of emission, related to depletion of terminal amino groups (stage II), and a major maximum of emission, decaying again to a lower level of chemiluminescence, indicating chain oxidation of -CONH-CH2- structural units (stage III). Terminal carboxyl groups show the general tendency to shift the induction time of the third stage to a shorter time.

Chemiluminescence from oxidation of polyamide 6,6. I. The oxidation of pure polyamide

P Cerruti;C Carfagna;
2003

Abstract

The chemiluminescence (CL) accompanying the oxidation of both polyamide 6,6 and a model diamide with no reactive endgroups is reported. CL emission for neat diamide starts after melting of crystallites, and the shapes of the intensity-time curve show a sigmoidal behaviour, typical of the chain oxidation of organic compounds. Adipic acid shortens induction period of chemiluminescence increase. A bimolecular hydroperoxide decomposition model can successfully describe the kinetic runs of CL. Polyamide 6,6 CL runs are apparently composed of 3 different kinetic stages: a decay from an initial CL value, due to the termination of peroxyl radicals being trapped in the polymer after processing and storage (stage I), a sudden increase of emission, related to depletion of terminal amino groups (stage II), and a major maximum of emission, decaying again to a lower level of chemiluminescence, indicating chain oxidation of -CONH-CH2- structural units (stage III). Terminal carboxyl groups show the general tendency to shift the induction time of the third stage to a shorter time.
2003
CHIMICA E TECNOLOGIA DEI POLIMERI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact