The study deals with the dc electrical conduction of poly(methyl methacrylate)/carbon black composites of different carbon black (CB) filler concentrations (2, 6, 12 wt%). The dc electrical conductivity was studied as a function of filler concentration, and temperature in the range (20–290 K). It was found that the composites exhibit negative temperature coefficient of resistivity (NTCR) at low temperatures and enhancement in the dc electrical conductivity with both temperature and CB concentration. The observed increase of conductivity with CB concentration was interpreted through the percolation theory. The dependence of the electrical conductivity of the composites in low temperatures was analyzed in term of a formula in consistence with Mott variable rang hopping (VRH) mechanism. The observed overall mechanism of electrical conduction has been related to the transfer of electrons through the carbon black aggregations distributed in the polymer matrix.

DC Electrical Conductivity of Poly (methyl Methacrylate)/Carbon Black Composites at Low Temperatures

G Ragosta
2008

Abstract

The study deals with the dc electrical conduction of poly(methyl methacrylate)/carbon black composites of different carbon black (CB) filler concentrations (2, 6, 12 wt%). The dc electrical conductivity was studied as a function of filler concentration, and temperature in the range (20–290 K). It was found that the composites exhibit negative temperature coefficient of resistivity (NTCR) at low temperatures and enhancement in the dc electrical conductivity with both temperature and CB concentration. The observed increase of conductivity with CB concentration was interpreted through the percolation theory. The dependence of the electrical conductivity of the composites in low temperatures was analyzed in term of a formula in consistence with Mott variable rang hopping (VRH) mechanism. The observed overall mechanism of electrical conduction has been related to the transfer of electrons through the carbon black aggregations distributed in the polymer matrix.
2008
CHIMICA E TECNOLOGIA DEI POLIMERI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact