The thermoelectric power and AC electrical properties of conductive polymer composites made of polycarbonate filled with randomly distributed PAN-based carbon fibers of different concentration: 0, 5, 10, 18, and 30 wt% were studied. The thermoelectric power was measured as a function of temperature in the frequency range from 200 kHz to 12 MHz. It was found that the observed Seebeck coefficient and thermoelectric activation energy depend on temperature, frequency and fiber concentration. The Seebeck coefficient calculated using the electrical transport theory of semiconductors decreases with both increasing temperature and carbon fiber content. The thermoelectric power results revealed that the composites function electrically as semiconductors. Dielectric constants and AC conductivity were calculated from impedance and phase angle measurements. It was found that both increase with increasing temperature. The activation energy and relaxation time decrease with increasing temperature measured and applied frequency. The thermoelectric power results indicated that electrical conduction in bulk composites is produced from a combination of transport processes involving: electrons, holes, ions and charged impurity motion in addition to protonic migration.

Thermoelectric Power and AC Electrical Properties of PAN- Based Carbon Fiber Composites

G Ragosta
2008

Abstract

The thermoelectric power and AC electrical properties of conductive polymer composites made of polycarbonate filled with randomly distributed PAN-based carbon fibers of different concentration: 0, 5, 10, 18, and 30 wt% were studied. The thermoelectric power was measured as a function of temperature in the frequency range from 200 kHz to 12 MHz. It was found that the observed Seebeck coefficient and thermoelectric activation energy depend on temperature, frequency and fiber concentration. The Seebeck coefficient calculated using the electrical transport theory of semiconductors decreases with both increasing temperature and carbon fiber content. The thermoelectric power results revealed that the composites function electrically as semiconductors. Dielectric constants and AC conductivity were calculated from impedance and phase angle measurements. It was found that both increase with increasing temperature. The activation energy and relaxation time decrease with increasing temperature measured and applied frequency. The thermoelectric power results indicated that electrical conduction in bulk composites is produced from a combination of transport processes involving: electrons, holes, ions and charged impurity motion in addition to protonic migration.
2008
CHIMICA E TECNOLOGIA DEI POLIMERI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact