A vector field splitting approach is discussed for the systematic derivation of numerical propagators for deterministic dynamics. Based on the formalism, a class of numerical integrators for Langevin dynamics are presented for single and multiple time step algorithms. (C) 2007 American Institute of Physics.

Design of quasisymplectic propagators for Langevin dynamics

Melchionna S
2007

Abstract

A vector field splitting approach is discussed for the systematic derivation of numerical propagators for deterministic dynamics. Based on the formalism, a class of numerical integrators for Langevin dynamics are presented for single and multiple time step algorithms. (C) 2007 American Institute of Physics.
2007
INFM
DISSIPATIVE PARTICLE DYNAMICS
MOLECULAR-DYNAMICS
BROWNIAN DYNAMICS
NUMERICAL-INTEGRATION
ALGORITHMS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/159704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact